227 research outputs found

    Two swimming modes in Trachymedusae; bell kinematics and the role of giant axons

    Get PDF
    Although members of the Rhopalonematidae family (Cnidaria, Hydrozoa, Trachymedusae) are known to exhibit unusually powerful jet swimming in addition to their more normal slow swimming behaviour, for the most part, reports are rare and anecdotal. Many species are found globally at depths of 600–2000 m, and so observation and collection depend on using remotely operated submersible vehicles. With a combination of in situ video footage and laboratory measurements, we have quantified kinematic aspects of this dual swimming motion and its electrophysiology. The species included are from two Rhopalonematidae clades; they are Colobonema sericeum, Pantachogon haeckeli, Crossota millsae and two species of Benthocodon. Comparison is made with Aglantha digitale, a species from a third Rhopalonematidae clade brought to the surface by natural water movement. We find that although all Rhopalonematidae appear to have two swimming modes, there are marked differences in their neural anatomy, kinematics and physiology. Giant motor axons, known to conduct impulses during fast swimming in A. digitale, are absent from C. sericeum and P. haeckeli. Slow swimming is also different; in C. sericeum and its relatives it is driven by contractions restricted to the base of the bell, whereas in A. digitale it is driven by contractions in the mid-bell region. These behavioural differences are related to the position of the different clades on a ribosomal DNA-based phylogenetic tree. This finding allows us to pinpoint the phylogenetic branch point leading to the appearance of giant motor axons and escape swimming. They place the remarkable dual swimming behaviour of members of the Rhopalonematidae family into an evolutionary context

    Light and Vision in the Deep-Sea Benthos: I. Bioluminescence at 500-1000 m Depth in the Bahamian Islands

    Get PDF
    Bioluminescence is common and well studied in mesopelagic species. However, the extent of bioluminescence in benthic sites of similar depths is far less studied, although the relatively large eyes of benthic fish, crustaceans and cephalopods at bathyal depths suggest the presence of significant biogenic light. Using the Johnson-Sea-Link submersible, we collected numerous species of cnidarians, echinoderms, crustaceans, cephalopods and sponges, as well as one annelid from three sites in the northern Bahamas (500–1000 m depth). Using mechanical and chemical stimulation, we tested the collected species for light emission, and photographed and measured the spectra of the emitted light. In addition, in situ intensified video and still photos were taken of different benthic habitats. Surprisingly, bioluminescence in benthic animals at these sites was far less common than in mesopelagic animals from similar depths, with less than 20% of the collected species emitting light. Bioluminescent taxa comprised two species of anemone (Actinaria), a new genus and species of flabellate Parazoanthidae (formerly Gerardia sp.) (Zoanthidea), three sea pens (Pennatulacea), three bamboo corals (Alcyonacea), the chrysogorgiid coral Chrysogorgia desbonni (Alcyonacea), the caridean shrimp Parapandalus sp. and Heterocarpus ensifer (Decapoda), two holothuroids (Elasipodida and Aspidochirota) and the ophiuroid Ophiochiton ternispinus (Ophiurida). Except for the ophiuroid and the two shrimp, which emitted blue light (peak wavelengths 470 and 455 nm), all the species produced greener light than that measured in most mesopelagic taxa, with the emissions of the pennatulaceans being strongly shifted towards longer wavelengths. In situ observations suggested that bioluminescence associated with these sites was due primarily to light emitted by bioluminescent planktonic species as they struck filter feeders that extended into the water column

    Observed and Modeled Bio-Optical, Bioluminescent, and Physical Properties During a Coastal Upwelling Event in Monterey Bay, California

    Get PDF
    During spring and summer time, coastal upwelling influences circulation and ecosystem dynamics of the Monterey Bay, California, which is recognized as a National Marine Sanctuary. Observations of physical, bio‐optical properties (including bioluminescence) together with results from dynamical biochemical and bioluminescence models are used to interpret the development of the upwelling event during August 2003 in Monterey Bay, California. Observations and the biochemical model show the development of a phytoplankton bloom in the southern portion of Monterey Bay. Model results show an increase of nutrients in the southern portion of the bay, where nutrient‐rich water masses are brought in by the southward flow and cyclonic circulation inside the bay. This increase in nutrients together with the sluggish circulation in the southern portion of the bay provides favorable conditions for phytoplankton growth. Our observations and models suggest that with the development of upwelling the offshore water masses with the subsurface layer of bioluminescent zooplankton were replaced by water masses advected from the northern coast of the bay with a relatively high presence of mostly nonbioluminescent phytoplankton. Inshore observations from autonomous underwater vehicles (AUVs) show consistent coincidence of chlorophyll, backscatter, and bioluminescence maxima during upwellingdevelopment. Offshore AUV observations (taken at the entrance to the bay) show a deeper bioluminescence maximum below the surface layers of high chlorophyll and backscatter values during the earlier stages of upwelling development. Later, the observed deep offshore bioluminescence maximum disappeared and became a shallower and much weaker signal, coinciding with high chlorophyll and backscatter values offshore. Based on the biochemical and bioluminescence models, a methodology for estimating the nighttime water leaving radiance due to stimulated bioluminescence is demonstrated and evaluated

    Non-excitable fluorescent protein orthologs found in ctenophores

    Get PDF
    Background: Fluorescent proteins are optically active proteins found across many clades in metazoans. A fluorescent protein was recently identified in a ctenophore, but this has been suggested to derive from a cnidarian, raising again the question of origins of this group of proteins. Results: Through analysis of transcriptome data from 30 ctenophores, we identified a member of an orthologous group of proteins similar to fluorescent proteins in each of them, as well as in the genome of Mnemiopsis leidyi. These orthologs lack canonical residues involved in chromophore formation, suggesting another function. Conclusions: The phylogenetic position of the ctenophore protein family among fluorescent proteins suggests that this gene was present in the common ancestor of all ctenophores and that the fluorescent protein previously found in a ctenophore actually derives from a siphonophore

    Feasibility Study and Design of In-Road Electric Vehicle Charging Technologies

    Get PDF
    Electric Roadways (ERs) or Dynamic Wireless Charging (DWC) lanes offer an alternative dynamic and wireless charging method that has the potential of giving electric vehicles (EV) limitless range while they are moving. Heavy-duty vehicles (HDVs) are expected to be early adopters of the DWC technology due to the higher benefits offered to these vehicles that are traveling on fixed routes. The goal of this project was to assess the feasibility of ERs in Indiana and design a test bed for in-road EV charging technologies. The most suitable locations for implementing DWC lanes were identified on interstates that are characterized by high truck traffic. Using I-65 S as a case study, it was found that DWC can be economically feasible for the developer and competitive for the EV owner at high and medium future projections of EV market penetration levels. However, the existing substations are unlikely to serve future DWC needs for HDVs. Thus, consideration should be given to substation expansion to support EVs as market penetration expands. Implementing the DWC technology on interstates and jointly with major pavement preservation activities is recommended. Large scale deployment can significantly reduce the high initial investment. Renewable energy resources (solar and wind) deployed in the vicinity of ERs can reduce the electricity costs and associated greenhouse gas emissions

    Can vertical migrations of dinoflagellates explain observed bioluminescence patterns during an upwelling event in Monterey Bay, California?

    Get PDF
    Extensive AUVs surveys showed that during the development of upwelling, bioluminescent dinoflagellates from the northern part of the Monterey Bay, California (called the upwelling shadow area), were able to avoid advection by southward flowing currents along the entrance to the Bay, while non-bioluminescent phytoplankton were advected by currents. It is known that vertical swimming of dinoflagellates to deeper layers helps them avoid losses due to advection. In the present paper, we investigate if modeling dinoflagellates’ vertical swimming can explain the observed dinoflagellates’ ability to avoid advection during the upwelling development. The dynamics of a dinoflagellate population is modeled with the tracer model with introduced vertical swimming velocity. Three swimming behaviors are considered: sinking, swimming to the target depth and diel vertical migration. Velocities in all swimming cases are considered in the ranges of documented velocities for the observed dinoflagellates species during the upwelling development in the Monterey Bay. Our modeling confirmed that observed bioluminescent dinoflagellates’ avoidance of advection during the upwelling development can be explained by their vertical swimming ability. In the case of swimming with 20 m/day (which is half of observed maximum swimming velocity), around 40% of dinoflagellates population from the northern part of the Bay were advected along the entrance to the Bay in comparison to the case without swimming. This is in agreement with the ratio of around 45% of observed mean bioluminescence intensity at the entrance to the Bay to the observed mean intensity in the northern part of the Bay. This mechanism also helps explain the general persistence of dinoflagellates in this part of the coastline

    A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly

    Get PDF
    Background: The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. Results: We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. Conclusions: These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies

    Records of ctenophores from South Africa

    Get PDF
    Although ctenophores can be conspicuous components of the plankton in coastal marine ecosystems, only six species have been formally described from around South Africa. Using photographs from local community scientists, we add a further three species (Cestum veneris, Beroe forskalii?, Ocyropsis maculata?) and six morphospecies to the regional fauna. These additions suggest that South Africa has a ctenophore fauna that is amongst the most diverse, globally; an observation in agreement with information from other taxa. Tips on how community scientists can improve their photographic contributions to understanding ctenophore diversity are provided

    Ancient gene linkages support ctenophores as sister to other animals

    Get PDF
    A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1,2,3,4,5,6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7,8,9,10,11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.journal articl

    Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa

    Get PDF
    Some of the most interesting and enigmatic cnidarians are classified within the hydrozoan subclass Trachylina. Despite being relatively depauperate in species richness, the clade contains four taxa typically accorded ordinal status: Actinulida, Limnomedusae, Narcomedusae and Trachymedusae. We bring molecular data (mitochondrial 16S and nuclear small and large subunit ribosomal genes) to bear on the question of phylogenetic relationships within Trachylina. Surprisingly, we find that a diminutive polyp form, Microhydrula limopsicola (classified within Limnomedusae) is actually a previously unknown life stage of a species of Stauromedusae. Our data confirm that the interstitial form Halammohydra sp. (Actinulida) is derived from holopelagic direct developing ancestors, likely within the trachymedusan family Rhopalonematidae. Trachymedusae is shown to be diphyletic, suggesting that the polyp stage has been lost independently at least two times within trachyline evolution. Narcomedusae is supported as a monophyletic group likely also arising from trachymedusan ancestors. Finally, some data, albeit limited, suggest that some trachyline species names refer to cryptic species that have yet to be sorted taxonomicall
    • 

    corecore